疏水缔合聚丙烯酰胺共聚物的研究进展

聚丙烯酰胺类聚合物在油田的应用越来越广泛,它在流度控制、提高原油收率、化学调剖、污水处理等领域具有非常重要的作用。聚丙烯酰胺分子上的–COO-对盐极其敏感,在高温高矿化度的环境下,会导致水溶液黏度大幅度下降,不能适应高温、高矿化度油藏驱油和钻井方面的要求。因此必须对水解聚丙烯酰胺进行改性,其中研究较多的是对疏水缔合水溶性聚合物的研究。疏水缔合水溶性聚合物是指在聚合物亲水性大分子上引入少量疏水基团的一类水溶性聚合物。在水溶液中,疏水基团由于憎水作用而发生聚集,使大分子链产生分子内与分子之间的缔合。在临界缔合浓度以上,以分子间缔合为主,增大了流体力学体积。因此,其有较好的增黏作用。疏水基团的加入可大幅度改变聚合物流变性能。

疏水缔合聚丙烯酰胺共聚物的研究进展

目前,鉴于三次采油中的油藏温度高及矿化度高的特点,要使驱油剂达到理想的效果,聚合物必须具有很好的增黏能力和很强的耐温,抗盐及抗剪切能力。由此在设计耐盐坑高温聚合物分子时,引入了含有对盐不敏感的磺酸基团的功能单体与带有空间位阻较大的环状结构的苯乙烯磺酸钠与N-乙烯基-2-毗咯烷酮的功能单体,使相对分子质最高的聚合物分子链刚性增强,以限止其在高矿化度条件下发生链卷曲,提高聚合物的耐温、抗盐性能。

疏水改性的聚丙烯酰胺,由于疏水缔合作用形成的空间网状结构受无机盐影响小,抗温能力强,增大了聚合物的流体力学体积。使溶液的黏度提高,因而具有良好的增黏作用,其耐溢、抗盐性能明显优于水解聚丙烯酰胺。疏水改性的聚丙烯酰胺的大分子链上含有许多带电基团与疏水基团,分子内电性斥力与极性基团的水化作用使大分子主链呈疏松伸展状态。当聚合物浓度达到临界缔合浓度时,大分子链交联,形成具有一定强度的空间网状结构,使流体力学体积增加,增黏能力增强。

AMPS(2-丙烯酰胺基-2-甲基丙磺酸)、AMC14S及AMC16S等是一类多功能阴离子单体,具有良好的聚合活性,可与多种单体共聚,这些单体分子中含有对盐不敏感的磺酸基团(-SO3-),磺酸基团中含有的两个S-O配位键,增强了S从-OH-上吸引电子的能力,使-SO3-较稳定,表现出对外界阳离子的进攻不敏感,提高了聚合物的耐温、抗盐性能。

国外研究现状

在国外,美国埃克森研究与工程公司的D.N.Schulz等人、McCormick等人及Bock等人对疏水缔合耐温抗盐聚丙烯酰胺共聚物做了大量的研究。

①美国南密西西比大学的McCormick等人用十二烷基硫酸钠作表面活性剂,以过硫酸钾为引发剂,合成了不同疏水侧链长度及不同单体含量的AM/N-烷基丙烯酰胺,并对共聚物水溶液在不同浓度、不同矿化度、温度、剪切速率下的性质进行了试验。在试验中发现,随着疏水链长度的增加,共聚物水溶液的黏度下降。AM/C3AM与AM/C10AM共聚物,在疏水单体投料超过0.75%时仍可溶于水,超过1.0%后就不再溶于水。当疏水单体比例增加时,溶液的表观黏度对溶液浓度的依赖性增加。当溶液的浓度达到临界浓度时,表观黏度发生突跃,这是由于疏水缔合作用引起的。当疏水单体投料为0.75%(摩尔分数)时,AM/C10AM共聚物在0.342 mol/L的NaCl溶液中配制浓度为2mg/L的溶液时,该溶液在25℃条件下的表观黏度为9mPa·s,符合驱油的要求。

②Mccormick等人在共聚物分子链上引入了离子基团,增加了疏水缔合水溶性聚合物在水溶液中的溶解性。通过此方法改性的疏水缔合聚合物在水溶液中的性能受静电斥力与疏水缔合作用的影响。静电斥力倾向于使分子链扩张,增大流体力学体积,同时使聚合物分子内缔合受到限制,疏水基团的存在有利于提高聚合物的增黏效果。采用胶束聚合的方法合成了3种疏水缔合共聚物:AM/C10AM/NaA、AM/C10AM/AMPS和AM/C10AM/NaMB。它们在水溶液中显示出典型聚电解质的高效增黏性。当加入小分子电解质后,静电荷被屏蔽,同时介质的极性增加。在临界缔合浓度以下,分子链收缩,流体力学体积减小,溶液的表观黏度减小;在临界缔合浓度以上,缔合作用受离子基团的种类与主链距离的影响。

③Bock等人研究了水解度为18%的特性黏度分别为0.20L/g、0.76L/g和0.84L/g的3种N-正辛基丙烯酰胺/AM的共聚物,在2%的盐浓度与给定聚合物浓度下,随聚合物特性黏度的增加,共聚物溶液黏度显著增加,缔合作用明显增强。

④美国埃克森研究与工程公司的SchulzD.N.等人通过不加入表面活性剂,而直接使用表面活性大的单体,如丙烯酸聚氧乙烯酯、丙烯酰胺基烷基乙磺酸等,它们同时含有疏水基与亲水基,采用传统的自由基水溶液共聚的方法合成了疏水缔合共聚物,当它们与丙烯酰胺共聚时,得到的聚合物在盐水中具有较高的黏度,能够达到驱油的要求。

⑤Bock等人采用胶束聚合的方法,以过硫酸钾为引发剂,在水溶液中通过自由基聚合的方法合成了AM/C8AM/NaA三元共聚物。研究表明,该缔合聚合物具有独特的流变性能,由于疏水基的存在,发生缔合作用,流体力学体积增大,在盐水中具有很好的增黏作用。

油田的应用越来越多,应在现有的基础上实现该类产品的工业化,降低生产成本,逐步完善其性能,不断满足油田勘探开发的需要。还应尽快研制与开发出一种超级耐温、抗盐能力好且性能优良、利于环境保护的新型单体,来满足深井钻井和高温油藏驱油的需要。

国内研究现状

(1)AMPS/PM(丙烯酰胺)/AN(丙烯腈)的三元共聚物。它在钻井液体系中有显著的降滤失作用;在淡水及饱和盐水钻井液中抗温达200℃,在盐水井液中抗温达180℃;抗盐至饱和,可抗浓度为120000mg/L的钙、镁离子污染。

(2)王中华合成的DMDAAC/AA(丙烯酸)/AM/AMPS四元共聚物。该共聚物的降滤失能力强,抗温达180℃,抗盐至饱和,并可有效地抑制钻屑分散。

(3)王中华合成的DMDAAC/AM/AMPS/淀粉四元共聚物。该共聚物在淡水钻井液中的加量为0.3%,在盐水钻井液中加量为0.7%,在饱和盐水钻井液中加量为0.9%,可有效地降低滤失量,抗溢达180℃,防塌效果较好。

(4)AA/AMPS/MA(马来酸酐)的三元共聚物,具有较强的抗温、抗盐能力,降低黏度、切力的效果好。

(5)冯玉军等人采用十六烷基二甲基烯丙基氯化铵C16DMAAC,以过硫酸钾为引发剂合成了AM/C16DMAAC/AA疏水缔合三元共聚物,它克服了胶束聚合中存在的聚合物纯化与后处理困难等问题。研究表明,该聚合物具有很好的耐温、抗盐性能,能够满足聚合物驱油的要求。

(6)AM/AMPS/AMC14S (丙烯酸胺/2-丙烯酰胺基-2-十二烷基乙磺酸)三元聚合物。不敏感磺酸墓团的引入,明显提高了聚合物耐盐性,AMC14S中疏水基团的缔合作用改善了聚合物分子的耐温、抗盐性能,提高了聚合物分子在盐水中的黏度等性能,是一种适用于高温、高矿化度油藏的驱油剂。

(7)叶林等人采用自由基聚合的方法,合成并制备出了水溶性丙烯酸胺-2-丙烯酰胺基-2-甲基丙磺酸钠(NaAMPS)-2-甲基丙烯酸氧乙基-二甲基十二烷基溴化按(DM-DA)疏水两性共聚物。经测试表明,由于在同一聚合物中引入了疏水结构及两性离子结构,这类疏水两性共聚物表现出较好的耐温耐盐等性能。研究表明,该共聚物的表观黏随NaCl浓度的增大而提高,无机盐的加入一方面使溶剂极性增强,从而使疏水效果增强;另一方面它屏蔽了分子内正负离子基团的相互作用,使内盐键受到破坏,分子链扩张,溶液黏度显著上升。

(8)李季等研究了AM、AMPS及一种既含磺酸基又含疏水性长链烷基的两亲性表面活性单体的三元共聚物ZYS。经测试,该共聚物在溶液中具有较高的耐盐性、短期和长期耐温性、注入性(滤过性)及流过毛细管时的抗剪切性。

(9)许国强、黄志红不使用表面活性剂,而直接使用表面活性大的单体丙烯酸十四酯(TA),利用引发剂BPO,合成了AM/TA二元共聚物,避免了后处理过程的复杂性,并进一步研究了疏水单体TA的用量、反应温度、剪切速率等因素对聚合物黏度的影响。实验结果表明,当疏水基的含量为0.43%-0.65%(摩尔分数)时,共聚物溶液在1.5% NaCI盐水中的增黏效果明显。

(10)孙克时、姚永南等人以AM、DEAM、NaAMPS为单体,通过在水溶液中自由基引发共聚的方法合成了AM/DEAM/NaAMPS三元共聚物,制得的聚合物相对分子质量大于1200 x 10^4。由于聚合物分子结构中含有离子基团与乙烯基团,使其对外界阳离子的进攻不敏感,而DEAM具有疏水性,增黏效果明显,其耐温抗盐性能明显优于HPAM。

(11)刘伯林等人合成的AM/AMPS/NVP(N-乙烯基-2-吡咯烷酮,简称NVP)三元共聚物,由于引入了一些分子链刚性强的环状基团,其耐温、抗盐性能好。N-乙烯基-2-吡咯烷酮的每个单休单元都含有非极性的疏水基和高极性亲水的酰胺基,因此它的特性与双亲特性相似。当共聚物中N-乙烯基-2-吡咯烷酮的含量增加时,共聚物溶液的黏度几乎不变,这一现象说明非离子型NVP单体对盐不敏感。该共聚物标准盐溶液的抗老化性能实验结果表明,当样品老化130时,表观黏度绝对值均在6.OmPa·S以上,这是由于共聚物中的N-乙烯基-2-吡咯烷酮有效地抵制了-CONN2的水解。N-乙烯基-2-吡咯烷酮是一种合成水溶性聚合物单体,具有活性中心基。氧原子可以通过与水合物表面相互作用形成氢键,将该环吸附到水合物表面,并使之成为笼型水合物的一部分,而与NVP的其他环联合作用抑制水合物的增长,从而有效地抑制了-CONH2的水解。

此外,成都科技大学研究的AM/AMPS/DMAM三元共聚物、AMPS/DMDA/AM三元共聚物以及王中华等人研究的AM/AMPS/AMC16S共聚物和AM/AMPS/SMC14S/DMDAAC共聚物均具有良好的耐温、抗盐性能,特别适合于作高温、高矿化度油藏的驱油剂。

近年来我国科研人员根据油田生产需求,对多功能聚丙烯酰胺产品的研究又有新的发展。

1.引入大侧基或刚性侧基团。引入大侧基或刚性侧基可使聚合物具有较高的热稳定性。这样聚合物的水溶液,可在高温下保持较高的黏度。即使老化过程中伴有分子链的断裂,但因刚性侧基的位阻效应、分子运动阻力大,所以聚合物溶液的表观黏度降低幅度较小。可提供大侧基或刚性侧基的单体有苯乙烯磺酸、N-烷基马来酰亚胺、丙烯酰胺基长链烷基磺酸和3-丙烯酰胺基-3-甲基丁酸等。

2.引入可抑制酰胺基水解的基团。通常分子链上酰胺基的水解是造成聚合物耐温耐盐性能降低的主要原因,引入可抑制酰胺基水解的单体可使聚合物的耐温耐盐性能提高。NVP可抑制酰胺基水解,采用NVP与AM共聚,当NVP用量适当时,可明显抑制聚合物分子中酰胺基的水解。因此,AM与NVP共聚合成的多元共聚物具有明显的耐盐能力,由AM与NVP及耐盐的单体AMPS共聚合成的共聚物,可达到更好的效果。

3.引入耐水解基团。采用耐水解的单体与AM等单体共聚可以获得耐温耐盐性能优良的水溶性聚合物。如由耐水解的N-烷基丙烯酰胺和耐盐的AMPS单体形成的共聚物,有很好的耐温耐盐能力,可用于高矿化度的高温地层。

4.引入耐盐耐温基团。在分子中引入对盐不敏感的磺酸基可使高分子化合物的耐盐性明显提高。由于2-丙烯酰胺基-2-甲基丙磺酸(AMPS)的特殊结构和其分子中含有对盐不敏感的SO3-基团,所以用AMPS与AM共聚,所得共聚物都有较好的耐温耐盐性。常志英等选用氧化-还原引发体系进行了AMPS/AM的低温共聚反应,得到了高相对分子质量(1*10^6-1 *10^7)和高线性规整性的AMPS-AM共聚物产品。经测定表明,这种共聚物具有突出的增黏作用和对高温高盐作用的稳定性,这方面已经有工业应用的报道。梁兵等合成了AM-DMAM(N,N-二甲基丙烯酰胺)-AMPS共聚物。结果表明,金属阳离子对共聚物水溶液黏度的影响很大,共聚单体在AMPS引入的阴离子是造成共聚物盐敏性的原因。在AMPS和DMAM共同影响下,共聚物获得了良好的耐温、抗老化性能。

欢迎分享,请注明出处:聚丙烯酰胺网_51PAM.COM » 疏水缔合聚丙烯酰胺共聚物的研究进展

赞 (1)
聚丙烯酰胺货源

0

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址