丙烯酸-丙烯酰胺共聚物的研究进展

 

丙烯酰胺(AM)与丙烯酸(AA)的均聚物和共聚物是一类用途广泛的多功能高分子化合物,是水溶性高分子聚电解质中最重要的品种。广泛应用于油田开发、矿业、印染、水处理和土壤改良等工农业领域以及医药、卫生食品等部门。近年来通过AA/AM与其他功能性单体共聚或通过“剪裁技术”( tailOr-make),利用接枝共聚、复合作用、互穿网络技术等对AA、AM的均聚物或共聚物进行改性,赋予这类聚合物特殊的物理、化学性能,使其应用更加广泛。

共聚物有关性质

周恩乐等人用电子显微镜深入研究了部分水解聚丙烯酰胺(HPAM)在水溶液中的形态。Channm研究了聚丙烯酰胺(PAM)在NaCI水溶液中的流变性能,包括稳定流动参数、屈服应力、触变行为、蠕变恢复。Flew和Sellin研究了HPAM在多孔相中的非牛顿流动。在同样的应变率(strain rate)下该溶夜的黏度增加是简单剪切流动的好几倍。在HPAM与甘油水溶液的混合开始时呈现出极不稳定的过度态,随后是稳定态。徐桂英和苏红梅研究了PAM与十二烷基磺酸钠-月桂酸钠混合表面活性剂之间的相互作用,结果表明PAM可与混合表面活性剂形成复合物,从而使体系表现出典型聚电解质行为。另外PAM不稳定、化学、机械及生物等因素均可引起其降解,这其中以热、盐、氧引起的化学降解为主,Ramsaen采用Fe2+/H2O2研究了羟基自由基引起的PAM化学降解,指出溶液中存在溶解氧时,会引起聚合物链断裂而使溶液黏度显著下降,可使用稳定添加剂如硫脲、硫代硫酸钠、异丁醇等来减弱降解作用给溶液黏度造成的负影响。Gao等人研究了在不同的过氧化物降解剂作用下,PAM水溶液在低温条件下的加速降解,这些降解剂是过硫酸钾(K2S2O8)、过硫酸铵[(NH4)2S2O8]、过氧化氢(H2O2)及过硫酸钾-硫代硫酸钠(K2S2O8-Na2S2O3)氧化还原体系。在诸多降解剂中,氧化-还原体系在开始2h时表现出最大降解效率,但最终的降解度低于过硫酸钾。此外,降解温度、过硫酸钾、PAM浓度和PAM相对分子质量均可影响PAM的降解率和最后降解度。

丙烯酸-丙烯酰胺共聚物的研究进展

聚合物的制备

AA与AM聚合物的制法有两种:一种是水解法,在丙烯酰胺均聚前或后,加入一定比例的水解剂,如NaOH、Na2CO3、NaHCO3,使大分子链上的酰胺基发生部分水解,变成羟酸盐;另一种是共聚法,将丙烯酸或丙烯酸盐与丙烯酰胺按任意比例共聚合。常见的共聚法有水溶液聚合、反相乳液聚合及反相悬浮聚合。

(1)水解法。

水解法制得的丙烯酸-丙烯酰胺共聚物,其丙烯酸盐链节在大分子链上的分布是无规则的,它占大分子链上所有链节数的摩尔百分比即为水解度。同共聚法相比,一般水解法制备的产物水溶性去屑因子(HD)不高,低于30%,理论上HD大于70%的产物应通过共聚法制取,该法对水解温度和时间有一定要求,同时水解过程中易发生大分子降解。

天津大学的冀兰英等人采用水解剂NaOH、Na2CO3对水解法进行研究,发现NaOH不但有加速水解的作用,还有加深水解的作用。如果要制得低水解度(<10%)的胶乳可用NaOH为水解剂,要制中水解度(>10%)的胶乳,最好用NaOH和Na2 CO3共水解,从而可在较短时间内达到较高水解位。近些年,高相对分子质量特别是超高相对分子质量丙烯酸、丙烯酰胺聚合物在三次采油方面具有无可争议的作用。与水解法相比,共聚法制得的AA/AM共聚物一般相对分子质量不高,水溶性不好,故而超高相对分子质量AA/AM共聚物多用水解法制备。季鸿渐、孙占维等人建立了丙烯酰胺水溶液聚合的潜在型引发体系,研究了在碳酸盐法聚合体系中,添加不同量氨、尿素、EDTA-2Na,以及聚合体系pH值、单体浓度、聚合水温度对聚合产物相对分子质量及其溶解性能的影响规律和原因,解决了产物高相对分子质量与产生不溶聚合物之间的矛盾。李小伏、李绵贵采用非均相水解与反相悬浮相结合的方法合成了相对分子质最大于1*10^7的阴离子聚丙烯酰胺,研究了水解度与水解时间及体系pH值的关系、不同水醇比条件下水解度与时间的关系、水解度与温度的关系,获得了超高相对分子质量速溶型聚丙烯酰胺的反应条件。

(2)水溶液聚合反应。

水溶液聚合反应是把反应单体及引发剂溶解在水中进行的聚合反应。该作法简单、环境污染少且聚合物产率高,易获得高相对分子质量聚合物,是聚丙烯酰胺工业生产最早采用的方法,而且一直是聚丙烯酰胺工业生产的主要方法。目前,对水溶液聚合研究已经比较深入。

据报道,赵彦生等人采用板化-还原体系考察了AM和AA的水溶液自由基共聚,研究了引发剂用量、温度、时间、pH值、单体配比等对共聚合反应的影响。Sarac等人进行了丙烯酰胺的电化学氧化还原引发的水溶液聚合,采用Ce(IN)-乙二酸为引发剂。结果表明,与非电解质(转化率为5%)及没用中孔玻璃板分开的电池(转化率为25%)相比,电解法中采用分开的电池(转化率为85%)时,聚合反应具有更大优势。在水溶性聚合物中引入少量疏水基团就能对聚合物水溶液的流变性带来极大影响,许国强、黄雪红用合成的表面活性大分子单体丙烯酸聚氧乙烯(23)-十二烷基酯(AA-POELE)与AM进行水溶液共聚,改性后的PAM中的疏水基团为1.1Omol%时,其水溶液表现出独特的流变性和增稠性。Mathakiya等在丙烯酰胺-丙烯酸共聚物中引入了丙烯腈单体,用自由基水溶液共聚法制得了丙烯酰胺-丙烯酸-丙烯腈三元共聚物,大大提高了P(AM-AA)共聚物的物理、机械性能及热稳定性和耐辐射性。

彭晓宏等人研究了氧化-还原体系对甲基丙烯酰氧基乙基三甲墓氯化铵(DMC),丙AM和AA三元水溶液共聚合的影响,探讨了引发剂种类、用量和反应温度对单体转化率及产物特性黏数的影响。研究表明过硫酸铵-亚硫酸氢钠引发体系最适宜于DMC/AM/AA三元共聚物的制备,由于DMC的引入,使PAM兼有阴、阳离子基团的特点。

潘松汉等人采用水溶液聚合法研究了脲对丙烯酰胺聚合及产物结构的影响,发现脲的加入能够取代AM双分子氢键缔合,使PAM水溶速度提高,玻璃化温度下降。宋彦风等人以丙烯酸钠、AM及丙烯酸羟乙酯单体进行了三元无皂乳液共聚,丙烯酸经乙酯的引入显著提高了吸水树脂的耐盐性。

(3)反相乳液聚合。

反相乳液聚合及反相悬浮聚合之前都需要制备反相胶体分散体系,即将单体水溶液借助搅拌分散或乳化于含乳化剂的油相中,形成水/油(W/O)非均相分散体系,然后加入引发剂进行游离基聚合。一般反相乳液聚合使用油溶性引发剂,多为阴离子型自由基引发剂和非离子型自由基引发剂,而反相悬浮聚合多使用水溶性引发剂,如过硫酸盐等。

有关AM/AA反相乳液聚合机理的成核机理目前存在两种看法:胶束成核及单体液滴成核。其动力学与典型正乳液聚合动力学有较大差别。影响AM/AA反相悬浮聚合的主要参数包括引发剂、乳化剂及有机相的性质、油水比、反应温度、体系中有机电解质的性质和浓度。Baad详细研究了采用链烷烃和芳烃作油相进行AM/AA的分散聚合。采用油溶性引发剂时,存在两种情况:一是油相为链烷烃时最终产物为稳定胶乳,但无胶束存在;二是油相为芳烃时,与链烷烃相比具有形成胶束结构的趋势。用于反相乳液聚合的引发剂,一般为阴离子型自由基引发剂和非离子型自由基引发剂,而较少采用阳离子型自由基引发剂,但阳离子型自由基引发剂有利于AM/AA与阳离子型单体共聚和反相聚合物乳液的稳定。

易昌风等以油酸失水山梨醇酯(Span80 )为乳化剂,偶氮二异丁基眯盐酸盐(AIBA)为引发剂,进行了N,N-二甲基,N-丁基,N-(3-甲基丙烯酰胺基)丙基溴化铵(DBMPA)反相乳液聚合,研究了单体配比、乳化剂用量、引发剂用量及反应条件等对聚合反应动力学的影响。潘智存等人以Slum-Tween类或Span-OP类为乳化剂,脂肪烃为油相介质,在氧化-还原引发剂条件下研究了丙烯酸系的反相乳液聚合反应,其中反应单体为丙烯酸、甲基丙烯酸、丙烯酰胺,研究表明以上反应体系适合合成印染用的增稠剂,并且反应体系pH值、单体浓度、共聚单体配比和油水比都对共聚反应影响很大。Rivas等人用此法合成了N,N‘二甲基丙烯酰胺-丙烯酸共聚物,该聚合物可用于水溶液中无机离子如Cu2+,Co2+、Ni2+、Cd2+、Zn2+、Pb2+、Hg2+等的分离。

近些年,在反相乳液聚合的基础上又出现了反相微乳液聚合,与反相乳液聚合相比,反相微乳液聚合制备的产物更稳定,乳胶粒径分布均匀。20世纪80年代张志成、徐相凌等人以Span20与Tween60为乳化剂制备了丙烯酰胺微乳液,研究了体系中Tween60浓度、水相丙烯酰胺浓度对微乳液电导行为的影响,得到了过硫酸钾引发的丙烯酰胺微乳液的聚合动力学表达式,认为该聚合反应类似于悬浮聚合。同时徐相凌、张志成等人以Span20与Tween80为乳化剂,研究了γ射线引发丙烯酰胺微乳液聚合,探讨了微乳液聚合的特点。

(4)反相悬浮聚合。

反相悬浮聚合是近10年发展起来的实现水溶性聚合物工业化生产的理想方法,1982年Di-monie利用电导、NMR、电镜研究了AM反相恳浮聚合。1985年Boghina及Dimonie对AM反相悬浮聚合的研究表明乳化剂类型影响产物结构,提出了有关聚合的微观特征的看法。Baad对AM反相悬浮聚合研究发现,采用水溶性乳化剂和链烷烃油相时,乳化剂的HLB值一般大于8,聚合机理及聚合反应动力学与溶液或悬浮聚合相同,每一个液滴相当于一个单独的水溶液聚合单位,引发、链增长、链转移和链终止具有游离基聚合的特征。符合双分子终止机理。Stupenkova、Dimonie和李小伏等人将AM反相悬浮聚合分为三个阶段,第一阶段形成水/油(W/O)或双连续相,反应体系的电导接近油相电导;第二阶段发生相反转,反应体系电导突增,接近水的电导,水相成为连续相,且黏度明显增加;第三阶段为反相悬浮聚合。1999年何培新等人采用反相悬浮聚合法以含有羟基、酰胺基的亲水性非离子单体的甲基丙烯酸经乙酯和丙烯酰胺与丙烯酸钠共聚合成了抗盐性能显著提高的高吸水性树脂。

(5)其他聚合方法。

除了上述方法外还可以通过Mannich反应、接枝共聚和复合作用等手段对丙烯酰胺及其衍生物的均聚物、共聚物进行改性。

Mannich反应是在聚丙烯酰胺上引入胺类物质,是聚丙烯酰胺获得阳离子聚电解质的重要途径,常用的胺有二甲胺、二乙胺、二乙醇胺等。AM/AA常与淀粉接枝共聚来制备高吸水树脂,或与其他大分子单体共聚从而将AM/AA接枝在某类膜上。高相对分子质量的HPAM广泛用于石油开采,但HPAM耐盐性较差。为了提高HPAM耐盐性,尚振平等人合成了端丙烯酰胺基(β-氨基丙酸)大分子单体,并在水溶液中用硫酸亚铁/异丙苯过氧化氢氧化-还原体系引发丙烯酰胺、丙烯酸钠与聚(β-氨基丙酸)大分子单体的共聚反应,合成了聚(丙烯酰胺-CO-丙酸钠)-g-聚(β-氨基丙酸)接枝共聚物。

淡宜、王琪等人通过复合作用,制备了聚(丙烯酰胺-丙烯酸)[P(AM-AA)]/聚(丙烯酰胺-二甲基二烯丙基氯化铵)[P(AM-DMDAAC)]聚电解质,同时研究表明P(AM-AA)与P(AM-DMDAAC)复合比、溶液浓度和氯化钠用量影响该复合物溶液中复合物的构象及流动力学半径。

欢迎分享,请注明出处:聚丙烯酰胺网_51PAM.COM » 丙烯酸-丙烯酰胺共聚物的研究进展

赞 (9)
聚丙烯酰胺货源

0

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址